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Full dislocations in a lattice of spinel type are dissociated into half and quaternary dislocations. In view of 
this, the common theory for f.c.c, crystals does not apply to stacking faults in spinel. Diffraction effects in 
the presence of half and quaternary dislocations are considered and expressions for the estimation of 
the probability of their appearance obtained. The results of calculations allow one to explain the broadening 
of lines on the magnesium spinel diffractogram and on that of 7-A1203. 

On diffractograms of magnesium spinel obtained by 
the crystallization of glass ceramic as well as on those 
of the annealed hydroxide AlzO3.4H20 slightly 
broadened 400 and 440 lines are observed. The rest of 
the lines are abnormally broadened (Fig. 1). This effect 
seems to be associated with stacking faults but it cannot 
be explained on the basis of the generally recognized 
theory of stacking faults in f.c.c, crystals (Warren, 
1959), because for f.c.c, crystals it is precisely the 400 
line that should be broadened most of all. 

The explanation lies in the fact that dissociation of 
full dislocations in the spinel lattice proceeds otherwise 
than in ordinary f.c.c, structures. According to Horn- 
stra (1960a, b) dissociation of dislocations in the spinel 
lattice due to the presence of vacancies in the sublattice 
of cations results in the formation of half and quater- 
nary dislocations (Fig. 2). As_ shown in Fig. 3 there are 
six half dislocations with A~ ~ Burgers vectors, each 
having a probability of ~, one of which is represented 
in Fig. 3 by a full line. 

There are 18 quaternary dislocations with 6i Burgers 
vectors. From the point of view of probability of their 
appearance these dislocations should be combined in 
sax sets of three since each set occurs simultaneously as 
a result of full dislocation dissociation. One set includes 
for instance gt, ~2 and ~3 dislocations (Fig. 3). The 
probability of error due to a set of dislocations will be 
taken as c~. We are interested not in dislocations them- 
selves but in displacements of atoms in the faulty zone 
relative to the perfect lattice. It is evident that A! 2) dis- 
placement vectors for a set of dislocations shown by the 
full line in Fig. 3 are 

X(12)=~t =~;A1 +½A2 ; 

A(22) = ~l + ~2 = 1A2, 

X~2~ = ~ +~2 +~3 =+A1 +~A~. 
[We ignore the synchronous shift according to 
Hornstra (1960a, b) since it must give diffuse scattering 
of the Suzuki atmosphere type.] 

Let us consider the products of structural amplitudes 
and their probabilities. We shall choose the origins of 
packet coordinates in different layers at the same point 

along the A1 and A 2 a x e s .  Structural amplitudes of 
packets in the A, B and C layers are 

When the packet and all overlying packets are dis- 
placed owing to the movement of dislocations F is 
changed to the factor exp ( - i2rc S. A) where X = X~ ) or 
A = A~ ) depending on the type of dislocation. We shall 
denote the structural amplitude by F~ where the lower 
index refers to the layer in which the packet in question 
was situated before any displacement, and the upper 
one to the value and direction of the displacement 
after the dislocation has passed. Possible changes of 
the upper indices of F i packets (and consequently, 
structural amplitudes) while passing from a packet in 
the 0 layer to a packet in the m layer are shown in Fig. 4. 
It can be seen that the probability of retaining the upper 
indices is proportional to 1 -6m~-6mT,  the proba- 
bilities that the upper index is changed to A~) or to a 
combination of A] z), A(2 2) and ~(2) being proportional 
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Fig. 1. The diffractogram of magnesium spinel obtained by sital 

crystallization. 
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to m,/and me respectively. The upper indices between 
packets cannot differ by more than AK; otherwise more 
than one stacking fault must pass between the 0 and m 
packets, the probability of which, with the usual as- 
sumption of e and ~ small (e 2~2-~e~_~0) ,  can be 
ignored. 

*= In the case of n = p ;  i=j; F.F v F2o; the probability 
of this combination equals the product of the prob- 

i @ Oxygen at layer 6 

@ Oxygen at layer 2 

( ~  Cation at A site 

0 Cation at B site 

Fig. 2. Diagram of the spinel crystal structure and the arrangement 
of partial dislocations. The numbers refer to the layers. 
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Fig. 3. Diagram illustrating the dissociation of full dislocations into 

partial ones. 
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Fig. 4. Diagram for the calculation of probability of faults. 

abilities that in m and 0 layers there are packets with 
the same lower indices and that they also have the 
same upper indices; the former probability is 

( J 
7~ 

pO= l + ( - 1 ) " 2 c o s ~ m  , 

the latter is 1 - 6 r n e - 6 m T .  Thus the contribution of 
these combinations to the mean product of structural 
amplitudes (F, FK) is o 2 * P"Fo(1 - 6me -- 6m~). 

When n--p;  i~j, for each packet in the 0 layer there 
are 12 packets in the m layer displaced relative to the 
0 layer by A~) or A~). Consequently, the contribution 
of these combinations to (F,F*r) is 

o 2 ~em ~ exp ( - i 2 n S .  X~ )) P"Fo LT , 
6 

+Tm ~ e x p ( - i 2 n S . A ~  )) • 
K = I  

The factor ½ was taken here because the shift areas 
under dislocations from ~2), ~(22) and ~2) combina- 
tions were assumed to be equal. 

If n ~ p, e.g. n = A, p = B, and i =j ,  the contribution 
to (F,,FK) equals 

P" Fo exp - i2n (1 - 6 m e -  6m7); 

and when i g=j the contribution is 

P,, Fo exp - i2n 

I-am ,8 6 -1 
x - - -  y' e x p ( - i 2 n g . X ~ ) ) +  7 m ~  e x p ( - i 2 n g . X ~  )) 

L 3K=1 J K=I 

If ng=p, e.g. n=A, p=C, and t=j, the contribution * 
( F, FK) is 

P2, F g e x p ( i 2 n ~ - ) ( 1 - 6 m e - 6 m T ) ;  

and when i v~j this contribution is 

( p ~ F 2 e x p  i2n ~ e x p ( - i 2 n g . z ~  )) 
K=I 

6 1 +?m ~ e x p ( - i 2 n g . N ~  )) . 
K=I 

P2 and P2, are accordingly the probabilities of a 
packet in the m layer before any displacement in the 
ABC alternation being subsequent or precedent in 
relation to the packet in the 0 layer. As shown by 
Kagan & Baurova (1968), 

P,,+=½ 1 - ( - 1 ) "  os -~m+l /3s in -~  , 

E ( n - ] / 3  sin-~ . P~--½ 1 - ( - 1 ) "  c o s ~ m  m 

Summing (F,,F*~) values for all p, n, i and j com- 
binations we obtain for m > 0 
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X. I 6 1 - 6m? - 6me + m7 ~ exp ( - i2r~g. A~)) 
K = I  

m0c 18 -- l 
+ --=- ~ exp ( -  i2ng.  A~ )) 

1 3 K=I 

= F2[A(m)+ iB(m)] ; 

6 
m? ~ exp ( -  i2xS.  A~ )) = mTqx ; 

K = I  

a m  18 
-- --(2) 3 ~ exp ( -  i27z S .  AK ) 

K = I  

where  
qx = 2[cos  rcH + cos rcK + cos (rcH) cos (rcK)] ; 

q2 = 4(1 + cos rcH + cos rcK); 

A(m)= [P° +(P+ + P~)cos 2nH3--~K 1 

x 1 - 6 m ~ - 6 m T +  --~-ql 

+-~--q2 cos 2~ +m?ql 

+ [P,~ - P,.+] sin 2re T q2 sin 2re 6 ' 

B(m)=(P~ - P+m ) sin (2rc -H~)  

x 1-6mo~-6mT+--~-qx+--~--q2cos 2~ 

+m,ql]-IP°+(P+ -Pro) cos 2x H 3 K  ] 

ma H - K 
X -~- q2 sin 2n 

Hence,  using 

I= ~ (F,,Fr) exp i2rc y m 

(Wilson,  1949), we shall  ob ta in  the intensi ty of 
sca t te r ing  at  H - K -- 3 M :  

I(H,K,h)=F 2 ,.=~ [ 1 - 6 m ?  ( 1 - - ~ )  -oo 

( )] h 
ql q2 cos rcM cos 2 n ~  m.  - 6 m ~  1 i8  18 

This express ion  is used if 

H - K  
H - K = 3M, cos 2n ~ = cos riM, sin 2n 

and  when  

H - K  
= O, 6 

H - K  
H -  K = 3M + 1, cos 2re ~ -  ½ cos rcM, 

Us ing  the fo rmula  for intensi ty  (Guinier ,  1961): 

I = F 2 ~ A(m) cos 2rchm- F2o B(m) sin 2rthlml, 
m = - o o  m = - ~ 

we shall ob ta in  the intensi ty of  sca t ter ing at  H - K  = 
3M___l" 

I(H,K,h)=F2m ~=~_ooE1-6m?(1- -q-~) 

18 36 cos ~ 

( 3  c ~ V 3 ?  c°s  rcM ) x cos 2rcm h____ll T- 47z 

[ a s s u m i n g  that ,  as c~ is small,  sin c~ ~- ct; (1 - ac0c~- ~]. 
Hence  F o u r i e r  coefficients and  d i sp lacements  of  

lines for different H,  K and  M c o m b i n a t i o n s  can  be 
ca lcula ted  (Table 1). 

Hence,  it is seen tha t  ha l f  and  q u a t e r n a r y  dis locat ions  
result  in the b r o a d e n i n g  of  nodes  with  H - K  =3M 
except  that ,  M even, q u a t e r n a r y  d is locat ions  result  in 
different b r o a d e n i n g  of  different nodes  and  tha t  ha l f  
d is locat ions  do no t  b r o a d e n  nodes  with even H and  K. 

S u m m i n g  by Khk ! = [ ~ ( a ' ~  + b'?)lLI]/(u + b)ho (War -  
ren, 1959) we ob ta in  m e a n  F o u r i e r  coefficients for the 

Table  1. Fourier coefficients and line displacements for 
various combinations of H, K and M 

Fourier 
H -  K M H and K coefficient A 
3M Even Even 1 0 

Uneven Uneven 1 - 8ma - 8my 0 
Uneven Mixed 1 - 8me - 8m? 0 

1 
3M + 1 Even Mixed 1 - 6m~x - 8m? I/3zc ct 

I "  

Uneven Even 1 - 6rmt + V---~3 c~ 7~ 
1 

Uneven 1 - 6mc~ - 8m? 1/~rc c~ 
g -  

1 
3M - 1 Even Mixed 1 - 6m0t - 8my + ~ a 

l / A  

Uneven Even 1 - 6met V3 - -  - - ( X  

7I 
1 

Uneven 1 - 6mc~ - 8m? + .--7-z--. c~ 
V~n 
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Table 2. Mean Fourier and line-displacement 
coefficients for the diffraction lines of spinel 

~ ++_ALo 
hkl Khk I (u + b)h~ 
111 2"60a + 3"467 + 0"046a 
220 4"26a + 5"667 + 0"046a 
311 6"33a + 6"637 - 0"033a 
400 6"00~ - O" 138a 
422 4"90~ + 6"53~ 0 
333 3"46a + 3"46~ 0 
511 6"06a + 5"00y - 0"053a 
440 4"24~ + 0"069~ 

lines of spinel and by (~+_ALo)/(u+b)h 2 obtain the 
mean coefficient of displacement of the lines (Table 2). 

The data given in Table 2 fully correspond to the 
broadening of the lines shown in Fig. 1 and are evidence 
of the fact that the lattice of magnesium spinel mainly 
contains half partial dislocations. 

The proof of the existence of quaternary dislocations 
is the result obtained from ),-A1203 spinel. This spinel 
is obtained by annealing the hydrooxide A1203.4H20 
at temperatures of 650, 800 and 900°C for periods of 
4 h. When a diffractogram has a form similar to that 
shown in Fig. 1 but with broadened 400 and 440 lines, 
displacement of these lines is also observed. By a 
method proposed by Kovalsky & Pivovarov (1960) 
stacking faults were estimated from the displacements 
of lines and appeared to be at the temperatures 650, 
800 and 900°C 0"010, 0-021 and 0.027 respectively 
(calculated for six quaternary dislocations). The transi- 
tion temperature to a hexagonal phase is 1100- 
1260°C. Consequently, in approaching this tempera- 
ture the number of errors associated with estimated 
quaternary dislocations increase. Besides, it should be 
noted that according to Hornstra (1960a, b) in the 
presence of half dislocations the cubic structure is 

maintained while quaternary dislocations lead to 
hexagonal interlayers. 

In conclusion it should be noted that the probability 
of stacking faults occurring in spinel was earlier in- 
correctly estimated according to the theory for usual 
f.c.c, structures (Fagherazzi & Lanzavecchia, 1969; 
Gorter, 1957). Strinkhaut & Rao (1972) showed that 
the common theory of the influence of stacking faults 
on X-ray diffractograms cannot be applied to spinel, 
however, no solution was given as to what the diffrac- 
tion effects in the case of half and quaternary disloca- 
tions would be. The first attempt at such a theory was 
made by Kagan, Portnoi & Fadeeva (1974) who took 
two quarternary dislocations into account, but their 
attempt does not give the correct quantitative results 
either. 
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